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Recent experimental investigations of criticality and phase separation in ionic 
fluids have revealed behavior of great theoretical interest. In seeking to under- 
stand the experiments, some of which appear to exhibit argonlike criticality and 
some of which exhibit "classical" (mean-field) criticality, a convenient starting 
point is the restricted primitive model (RPM) of symmetrically charged hard 
spheres, all of equal diameter tr, each sphere bearing a positive or negative 
charge of magnitude q. There is overall charge neutrality, so that the expected 
number densities of the anions and cations are equal, p + = p_. Studies of RPM 
charge-charge and density<lensity correlation functions indicate that the 
fluctuation-suppressing mechanism that yields mean-field critical behavior in 
nonionic systems with long-range interparticle potentials is not operative in the 
RPM. On the basis of plausible assumptions, Ising-like behavior is instead 
expected. The above work is summarized. New work of Zhang and the author 
is outlined, showing that when one loses the RPM symmetry (through, e.g., 
different valence, diameter, or dipole moment of anions and cations) a strong 
coupling between charge-charge and density-density correlation ensues. The way 
in which this can be expected to give rise to mean-field or mean-field-like 
behavior is noted. Other new observations concern the mean-field analogy 
found by H~ye and the author between the parameter 2 / (d -  2) (d is the dimen- 
sionality) in that model and the monomer number in high polymers, with 
respect to the coexistence-curve shape dependence on those parameters. 

KEY WORDS: Ionic fluids; primitive model; criticality; phase transitions; 
second moment condition. 
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so deepened our understanding of criticality and phase transitions. It 
therefore seems particularly appropriate to consider here the intersection of 
these two major interests of Onsager 's-- the subject of criticality and phase 
transitions in ionic systems. This is an active area of research today, in 
which a number of quite recent new results have been obtained, including 
both experimental results 11-8~ and computer-simulation results. 19 ~2~ As we 
shall see, these results present major challenges to our current theoretical 
understanding. But as we shall also see, that understanding appears to be 
rapidly deepening. 

In seeking to comprehend the recent experiments on such systems 
- - some  of which exhibit argonlike criticality t3~ and some of which exhibit 
"classical" (i.e., mean-field) criticalityt2'71--I shall be drawn into a con- 
sideration of dipolar fluids, too, as well as charge-dipole interaction in 
ionic fluids, simply because the best and most common solvents in ionic 
solutions are dipolar. In fact in discussing ionic-fluid criticality and phase 
separation, it is useful to begin by contrasting two quite distinct cases, one 
of which does not hinge crucially on the critical properties of the solvent, 
which is typically dipolar, the other of which does. In the case it does 
no t - - I  shall refer to it as Case I criticality--one considers a solvent that is 
well away from its own critical point and, as far as its effect on criticality 
goes, behaves passively. Into it one introduces ions that are sufficiently sim- 
ple (in their interaction with each other and with the solvent) to be treated 
as charged hard spheres immersed in a medium that can be regarded as a 
structureless continuum that is characterized by the solvent dielectric con- 
stant e. (The vacuum, of course, is one such solvent.) Neglecting the effects 
of everything but the hard cores of the ions and their charges, one can ask 
whether one should expect a critical point in this system in the first place 
and, if so, what it will be like. The answer to the first part of the question 
appears to by "Yes." I shall return shortly to consider the second part. 
Perhaps the simplest nonlattice Hamiltonian model that embodies Case I 
features is the restricted primitive model (RPM)--charged hard spheres in 
a continuum background of dielectric constant e, with anions and cations 
of equal charge magnitude q and diameter tr. 

In a case that is conceptually different in a fundamental way (I shall 
call it Case II), one supposes that one has a pure solvent at or near its 
liquid-gas critical point. Then one adds some salt. One now has an ionic 
fluid, which typically will have been perturbed somewhat by the addition 
of the salt but which remains near its critical point, or can be kept near it 
by smoothly adjusting its temperature T and density/9 as the salt is added. 
This also gives one an ionic fluid near criticality, but it seems prudent 
to be prepared for the systems considered in Case I and Case II to have 
quite different critical behavior, with Case II criticality not essentially 
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different from the pure-solvent criticality found before the addition of the 
ions. 

There are yet other cases of interest that one can imagine. For exam- 
ple, suppose one has a mixture of two fluids, A and B, that are immiscible 
over a range of conditions because the AB pair potential is repulsive 
relative to the AA and BB potentials. [A simple model with this property 
is the Widom-Rowlinson mixture it31 in which the pair potentials are given 
by 

~DAA(F) = q)BB(r) = 0 
~OAB(r ) = q~HS(r ) (1.1) 

where r is the distance between particle centers and q~nS(r) is the potential 
between hard spheres of diameter a 

oo, r < a  (1.2) 
q~HS(r) = O, r > a 

The model phase-separates with a critical point. 1~3)] A widely held expecta- 
tion is that this sort of mixture will have argonlike critical behavior when 
described in the appropriate thermodynamic variables, because of the 
relatively short range of the potentials responsible for the phase separation 
and the fact that there appears to be no fundamental difference in sym- 
metry between this system and those in the Ising model universality class. 

Now, suppose that one lets the A species ionize, so that some 
appreciable fraction of A particles are replaced by A + cations and A -  
anions, with B remaining an un-ionized solvent. We shall call this Case III. 
As in Case II, one expects the critical parameter to be perturbed by the 
introduction of charge, but as in Case II, one might expect the criticality to 
be essentially that of the system in the absence of the charges. 

Criticality in Case III, because solvent-solute repulsion is a driving 
force behind the phase separation one finds there, is sometimes referred 
to as solvophobic, and criticality in Case I as Coulombic or Coulomb- 
dominated, because it would vanish along with the associated phase separa- 
tion if one turned off the charges. 14" 5.8. 141 Case II, although solvophobicity 
in the literal sense is not an active ingredient of its critical behavior, is 
currently often categorized along with Case III as "solvophobic," because it 
is expected to share with Case II the same critical exponents and other 
features that define the universality class of a critical point. Perhaps 
it would be better to broadly categorize both Cases II and III as non- 
Coulombic or solvent-dominated criticality and phase separation and reserve 
the term solvophobic for criticality and phase separation in systems, such as 
those described under Case III, in which solvophobicity is active in a literal 
sense. 
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In my Onsager Symposium lecture I also considered some aspects of 
phase transitions in dipolar fluids that I shall not touch upon in this 
article--in particular, ferroelectric ordering. I intend to consider that 
omitted work in a companion article t15~ to this one that includes some of 
the details of the Hcye and Stell work cited here concerning the effect of 
charge~lipole terms as well as a summary of the relation between recent 
computer-simulation results on dipolar and spin fluids tl6 2o) and related 
theoretical advances. 

2. COULOMB-DOMINATED CRITICALITY 

2.1. The Restricted Primit ive Model  ( R P M )  

2.1.1. Existence and Location of the RPM Critical Point 
and Phase Boundary. Until the mid-1970s there appear to be no 
references in the ionic-field literature that seriously questioned whether one 
should assume that a Case I critical point exists in the first place, and only 
a few touched upon where one might expect such a point to be located. In 
the ionic-solution literature, this was most likely due to the fact that typical 
strong aqueous electrolytes do not tend to phase-separate at or near 
standard conditions (room temperature and pressure), so there was no 
compelling experimental reason to focus upon the question, which tends to 
be obscured by the freezing and boiling of most ionic solutions as soon as 
one departs substantially from room temperature as a result of the presence 
of the solvent. Molten-salt criticality can be expected to be Case I criti- 
cality, too, and has the simplifying feature that there is no molecular 
solvent in a pure molten salt. However, in the molten-salt literature, there 
was a similar lack of focus upon criticality, although for different reasons. 
The existence of molten-salt critical points has long been taken for granted, 
since at elevated temperatures one finds liquid-gas phase separation, which 
is typically associated with a critical point. But for most known molten 
salts the inferred point was at too high a temperature to be experimentally 
accessible, precluding any detailed comparison of theoretical prediction 
with experiment. 

In a 1962 paper by McQuarrie r considering fused-salt thermo- 
dynamics using a cell-model version of the restricted primitive model, a 
critical point was located on the basis of a cell-model treatment, which is 
intrinsically a mean-field approach. Very shortly thereafter, Friedman t22J 
discussed some interesting ionic fluids that demix under easily accessible 
conditions, and proposed a mechanism driven by enhanced dielectric con- 
stant as a means of understanding the resulting fluid-fluid phase separa- 
tion. In a subsequent paper by Stillinger and Lovett ~23~ on concentrated 
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electrolytes modeled by the RPM, an RPM critical point was shown 
without further comment in a schematic phase diagram; the implicit 
assumption that an RPM critical point exists was in keeping with the 
earlier use of RPM-like models by Stillinger in the theory of fused 
salts.t24, 25~ In a Monte Carlo computer-simulation study 126 28) of the RPM 
thermodynamics reported in 1970, behavior was found that suggested criti- 
cality and phase separation. However, the simulation consisted of relatively 
short runs done for 32 particles and it seems fair to say that it involved far 
too great a degree of uncertainty to be reliable. (In the light of subsequent 
work the critical density originally surmised from the study is almost an 
order of magnitude too high.) 

In 1974 the author undertook a systematic theoretical investigation 
of RPM thermodynamics with K. C. Wu and Bjcrn Larsen (now Bjcrn 
Hafskjold) c29~ using a variety of approximations for _flfEX, where fEX is 
the Helmholtz free energy excess to the ideal-gas value per unit volume. I 
shall refer to the simplest approximation we considered as "hard-sphere 
plus Debye-Hiickel limiting law" ( H S + D H L L ) .  Expressed in terms of 
fEX, it consists of the sum of a hard-sphere contribution _ f l fns  plus the 
famous Debye-Hiickel limiting-law term Fo3/127z, where F o is the Debye 
inverse screening length, Fo 2 = 4npflq'-/e, with p the total number density of 
the ions, p = p + + p .  [For  the RPM this approximation is the Coulombic 
analog of the three-dimensional version of the van der Waals equation, 
_ f i r , s +  flap'-, the mean-field result for a fluid of particles with attractive 
dispersion-force pair interaction q~(r), a = - � 8 9  q0(r)dr.] Stell et al. also 
added to this expression all further terms in the systematic expansion of 
_flfEX in F 0 through Fo 6 (i.e., through third order in the charge-strength 
parameter fl* =flq2/tre)13~ and formed the Pad6 approximant t31"3-'1 that 
correctly "saturates" to linear behavior in fl*, thus interpolating between 
the correct small-fl* and large-fl* behavior (ref. 33, Section 3). We also 
considered the mean spherical approximation (MSA) result, t341 which out- 
side the hard-core region, r<cr,  is a linear theory in fl*, but correctly 
accounts for the impenetrability conditions gp(r)=gq(r)=O for r < a  
shared by the density distribution function gp(r) and the charge distribu- 
tion function g,~(r) resulting from the hard cores of the charged spheres 
(ref. 35; ref. 33, Section 4). The MSA is a considerable improvement over 
the standard linearized Debye-Hiickel theory (LDH), which accounts for 
only the electrostatic boundary condition on gq(r) that results from the 
absence of charge within the core region, and does not include the _ f l f . s  
term at all. Approximations that include the full Boltzmann-factor non- 
linearity of the second ionic virial coefficient B(/") {36~ were also assessed by 
Steil et al. Each of the approximations evaluated thus embodied a different 
combination of the physical effects that go into the full thermodynamic 
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behavior of the RPM; all of them yielded the simple liquid-gas-type 
critical point characterized by a very much lower critical density than that 
of a simple argonlike fluid. Beyond the strong support the study gave to 
the conclusion that an RPM critical point indeed exists, the very low set 
of values of the critical density Pc obtained from the various approaches 
was one of the most striking results of the study. The critical temperature 
T* [=ffg/flq2], density p* [ = p 0 " 3 ] ,  and pressure P* [=Petr4/q 2] for the 
hard-sphere term plus Debye-Hfickel limiting law ( H S + D H L L ) ,  Pad6, 
and MSA, were found to be as follows: 

HS + D H L L  T* = 327 x 10 -3  pc* = 0.123 

Pad6 T,* = 74 x 10-3 pc* = 0.010 

MSA T* = 79 x 10 -3 p* = 0.014 

P* = 790 x 10 -5 

P * = 6 x  10 -5 

P* = 9.7 x 10 -5 

(2.1) 

(In order to facilitate comparisions, I note that Fisher, t37) on the basis of the 
recent Monte Carlo simulation results of Valleau tgl and Panagiotopoulos, c1~ 
has concluded that reasonable estimates for T,* and p* are 

T* = 57 x 10 -3 ,  Pc* = 0.030 (2.2) 

with not enough known from simulation to give a reliable Pc*.) One sees 
that the HS + D H L L  result differs enormously from the other two given in 
(2.1), which are not too different from each other. The HS + D H L L  T* 
appears to be about 6 times too big and the p* about 4 times too big; the 
Pad6 and MSA values for T* are about 4/3 of the most likely value and 
the pc* about 1/3 or so of the most likely value. (One thing this reveals is 
the great importance of the core condition imposed by the MSA, since 
it is only the core condition that distinguishes the MSA from the 
H S + D H L L  result.) The major source of error in the MSA and Pad6 
results can be best understood in terms of ionic association, to which I now 
turn. 

Although a wide variety of theories were compared in the study by 
Stell et al., no attempt was made to incorporate the results of approaches, 
which go back to Bjerrurn, t38) that explicitly take into account the asso- 
ciation of ions into neutral pairs or larger clusters. Subsequently in 1979 
Friedman and Larsen t391 used the approach to association developed 
earlier by Ebeling t4~ to locate the coexistence curve and critical point of 
the RPM. This approach employed Bjerrum's original treatment of ion 
pairing to augment linearized Debye-Hiickel (LDH) theory through the 
addition of a neutral associated species of ion pairs treated by means of the 
law of mass action. Shortly thereafter, Ebeling and Grigo c41) elegantly incor- 
porated ionic pairing via a law of mass action into the MSA augmented by 
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the second ionic virial coefficient B(F), and located the resulting critical 
point. Subsequently, Gillan ~4z) systematically estimated the thermodynamic 
effects of association in the RPM due to ionic clusters through hexamers, 
neglecting interactions among clusters, while Tani and Henderson (43) made 
similar estimates that included cluster-cluster interaction in the MSA but 
neglected clusters beyond trimers. Pitzer and Schreiber (44) then extended 
the Tani and Henderson treatment to hexamers and considered the effect 
of clustering on the critical parameters, which Tani and Henderson had not 
done. More recently Given and Stell (45) have generalized this approach still 
further in a way that frees it from the necessity of using Monte Carlo 
estimates of the cluster contributions, while Fisher and Levin, ~46) building 
upon the Friedman-Larsen computation, have included the ion-dipole 
interaction between free ions and ionic pairs. When added to the LDH 
result, this proves to be of great importance in yielding a coexistence curve 
of reasonable shape, an issue studied in detail in ref. 46. 

In the RPM, ionic clustering is a result of the extremely strong 
Coulombic attraction between ions of unequal sign when they are close to 
one another-- this  effect is a highly nonlinear one in charge strength and is 
not captured by linearized approaches such as the LDH or MSA theories. 
Less obviously, it is not well described quantitatively even by those theories 
that have captured important features of the nonlinear behavior such as the 
Pad6 or Pad~ (.JB2(F) (the union of the Pad6 approximant and the second 
ionic virial coefficient) which Stell et al. also considered. Such approaches 
are not well suited to describing association, because of the very stringent 
dictates of the law of mass action; using such approaches to describe 
accurately the increasing association at fixed p as the temperature is 
lowered would require one to describe faithfully the nonlinearities through 
higher and higher order in the ionic virial expansion. 

Unfortunately there is a vexing degree of arbitrariness in the usual 
approaches to ionic association with regard to what one should mean by 
an "associated pair of unlike ions" and its density p +_; the definition of 
association thus becomes a central problem in itself. Bjerrum regarded as 
associated two ions that have their centers a distance r apart with a ~< r ~< D 
and chose D = 2q2fl/e, while Gillan as well as Pitzer and Schreiber used 
the simpler D = 2a. Tani and Henderson considered a range of D values. 
Ebeling and Grigo use a natural but somewhat subtle definition of associa- 
tion and association constant K=p+_/pFpF_, where p~+ and p [  are the 
densities of free cations and anions, respectively, so p = p F+ +pF_ + 2p§ _. 
The Ebeling-Grigo definition is based on the Ebeling formulation of a 
minimization condition on the free energy with respect to the p,.F's with 
p fixed. Fisher and Levin retain the Bjerrum definition after concluding 
that in the region of phase separation its use would yield numerical 
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consequences that differ only negligibly from those based on Ebeling's 
approach. In their interesting study of the two-dimensional Coulomb gas, 
Hcye and Olaussen ~471 introduce a definition of K that can be regarded 
as a generalization of the Ebeling and Grigo definition, in which the 
Ebeling-Grigo use of F o as a screening parameter via B(Fo) is replaced by 
the use of the renormalized parameter that screens their charge correlation 
function hq(r). Hcye and Stell, in as yet unpublished work, have subse- 
quently extended this approach to three dimensions and have shown how 
it can be recovered from an appropriate minimization of the free energy, as 
well as how it can be used to estimate the way association will change the 
MSA value of Pc*. 

The most obvious effect of incorporating association into linearized 
theories such as the LDH theory and the MSA in the neighborhood of 
their critical points is to lower the inverse charge correlation length F as 
a result of substituting the concentration of free ions pF+ + pF for the total 
concentration of ions p in the expression for F in each theory. This shifts 
the critical density upward by a substantial amount, but one that depends 
quite sensitively on the details of the theory being considered, as the results 
given below will indicate. 

I pause here in the discussion of association to summarize the most 
reliable current assessments of the RPM critical-point location, which are 
those based on recent Monte Carlo simulation results. Such simulations 
have been made by Valleau, 191 who estimated T* =0.070 and p* =0.07 
from his results, Panogiotopoulos, who estimated T,*=0.056 and 
p* = 0.040 in an initial study Ij~ and T* = 0.053 and p* = 0.025 in further 
work with Orkoulas, I~1 and Caillol, 1121 who estimated T,* ~> 0,057, and 
regarded p,* = 0.040 as reasonable. Caillol further noted that although his 
fl,.Pc [=fl,.Pca 3] cannot be reliably estimated, it appears to be of 
magnitude ,~ 10 -3, which would put the magnitude of P* at ,w,6 x 10 -5, 
since fl*---1/T*. Analytic estimates of P,* were made by Pitzer and 
Schreiber, who concluded that P * ~ 5 0 x  10 -5 is reasonable, and who 
reanalyzed the earlier discussion of Gillan in this connection to find that 
the results suggested P* ~ 26 x 10 -5. For the moment, all one can say is 
that P* probably lies within the spread of values 

P * ~ 6 x l 0  -5 to 50x10  -5 (2.3) 

I have already quoted in Eq. (2.2) the values of T* and p* favored by 
Fisher 137) and Fisher and Levin, 146J who base them on a critical appraisal 
of the results of Valleau tg) and Panagiotopoulos "~ that includes an 
analysis of finite-size scaling effects not made by those workers them- 
selves. 
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When one turns to the quantitative effects of ionic association, one 
finds that the different approaches to association that are available lead to 
an array of different numerical estimates of critical parameters-- the 
ambiguity in the value of the cut off parameter D introduced by Bjerrum 
is itself enough to yield a whole spectrum of possibilities. It is clear there- 
fore that one can arrive at almost any target set of critical parameters by 
judiciously selecting from among the linearized theories with which one can 
start and from the range of association approaches one can use to supple- 
ment them, and finally from a variety of embellishments with which one 
can decorate the final result. Nevertheless, out of this welter of choices one 
can identify a few important trends that deserve to be pointed out. Here the 
focus will be on a comparison of the linear theories and the effect of incor- 
porating association into them through a law of mass action. 

First of all, it is worth noting that the MSA is much more quan- 
titatively accurate than the LDH theory with regard to RPM criticality. 
The critical parameters of LDH theory are t46" 48, 491 

T,* = 62.5 x 10 -3, p,* = 0.0049, P* = 2.81 x 10-5 (2.4) 

One sees that p,* is an order of magnitude too low and P,* quite likely an 
order of magnitude too low also. Only T,* is of the right order of 
magnitude. The MSA values are given in Eq. (2.1)--the MSA T* is a little 
high and p,* perhaps one-half the correct value; P* is probably low, but is 
three times higher than the LDH value. 

The HS + D H L L  critical values have already been discussed [see 
Eq. (2.1)]; T* and p,* are too high by something less than half an order 
of magnitude (P* is probably over an order of magnitude too high also). 
It is interesting that the much less accurate "free-volume" correction con- 
sidered by Fisher in place of an accurate HS term in his discussion of the 
D H L L  yields T* and p* that are very different from these values and 
considerably worse (T* = 5 6 0 x  10 -3, p* =0.283, P* =2946 x 10-5). The 
treatment of the hard-sphere term makes a big difference even at the very 
low critical densities involved. 

I shall select just a few of the various ways of adding association to 
both LDH theory and the MSA. The approach based on the LDH theory 
used by Friedman and Larsen ~39) and by Fisher and Levin146~--DHBj in 
the latter's terminology--yields the good values 

LDH + Bj: T* =62.5 x 10 -3, p,* = 0.0453 (2.5) 

with P,* not reported. The coexistence curve, however, has an unreasonable 
shape, as both groups have noted. Ebeling, who added the second hard- 
sphere virial-coefficient contribution and used a slightly more sophisticated 
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means of defining the association constant, appears to have obtained the 
values 

BHs + LDH + Eb: T* =0.0617, p* = 0.042 (2.6) 

but owing to ambiguities and a probable misprint in his reported values, 
these very good results are not certain. 

McGahay and T o m o z a w a  t48'49) have recently supplemented the L D H  
theory with a treatment of association introduced by Fuoss. Their critical 
values for the RPM are 

LDH + Fuoss: T* = 0.0625, p,* = 0.159, P * = 9 0 •  10 -5 (2.7) 

The p* is far higher than the best estimates of this quantity. Moreover, as 
has been pointed out, ~5~ this treatment of association does not appear to 
be appropriate to hard-core models such as the RPM. 

As already noted, Fisher and Levin have augmented the LDH + Bj 
approach by inclusion of the dipole-ion interaction between associated ion 
pairs and free ions with good results. Their critical values are 

LDH + Bj + DI: T,* = 0.0574, p* = 0.028 (2.8) 

I turn next to the use of the MSA as a starting point upon which to 
superimpose association. When corrected for association into neutral pairs 
by Ebeling and Grigo, c4~ the MSA critical value of p* is considerably 
improved (as P~* may also be), although T* is not: One has 

MSA + EG: T* = 0.08368, p* = 0.018, P* = 35.4 • 10 -5 (2.9) 

Moreover, the coexistence curve has a reasonable shape. It will be of great 
interest to see how these values change when further corrected for the 
presence of interaction between the free ions and the dipolar pairs of 
associated ions. This computation is in progress. The systematic addition of 
the effect of association into trimers and larger clusters is also possible, 
although it would be formidable if done in a way strictly analogous to the 
Ebeling-Grigo treatment of pair association. 

Hcye and Stell have also made an estimate of the effect of association 
on the MSA that is based upon the use of the Hcye-Stell extension to three 
dimensions of the Hcye-Olaussen ~47~ approach to the two-dimensional 
Coulomb gas. In a computation that leaves T,* fixed they find p* = 0.045 
with P* unassessed. It seems clear that the MSA, like the LDH theory, will 
prove quite sensitive to the details of the association theory into which it 
is incorporated. 



Criticality and Phase Transitions in Ionic Fluids 207 

In Section 4 of the article based upon his own Onsager Symposium 
contribution on ionic criticality, Fisher t37~ notes that the very low density 
of the RPM critical point is associated with an asymmetric, sharply peaked 
coexistence-curve shape in a p vs. T plot that is highly reminiscent of the 
similarly skewed coexistence curve of polymer solutions in poor solvents 
and in polymer blends. There the polymer length measured in monomer 
number M is an important parameter, such that in the M ~ oo limit one 
expects the critical point to become a zero-density tricritical point in 
Flory's mean-field theory, ts~ which appears to be particularly useful in 
describing polymer blends. ~52~ As M ~ ,  deviations from mean-field 
behavior become harden and harder to detect, and Fisher points out that 
it would be valuable to be able to identify some quantity analogous to M 
in the ionic problem, in which the apparent mean-field nature of some ionic 
fluids might be due to a similar effect, at least in part. 

On the basis of work with Heye, I propose that one such analog is 
2/ (d-2) ,  where d is the dimensionality. As noted in the beginning of this 
section, in a three-dimensional system, the version of mean-field theory 
appropriate to an ionic fluid yields the Debye-Hiickel analog of the van 
der Weals attractive term, which is of the form const(flp) 3/2 in - f l f a n d  tiP. 
In d dimensions this becomes const(flp) d/2 and the limit d--, 2 is analogous 
to the polymer limit M ~ ~ .  One can see this easily by writing down the 
van der Weals-like equation of state for the RPM, 

t iP= P -const( f lp)  d/~, 2~<d~<4 (2.10) 
1 - bp 

and considering the shape of the coexistence curve. As d--*2 the 
coexistence curve approaches a pair of straight lines in the p, T p lane- -  
a vertical line from p, T =  0, 0 up to p,., Tc (with Pc = 0) and a line with 
negative slope for p > Pc starting at Pc, To. One has bpc = ( d - 2 ) / ( d +  2). 

2.1.2 .  C o r r e l a t i o n  F u n c t i o n s  and t h e  N a t u r e  of  C r i t i c a l i t y  
in t h e  R P M .  The discussion of the last section concerns the existence 
and location of the coexistence curve and critical point in a fluid of charged 
hard spheres, but not the structure of the correlation functions or the 
universality class of the critical behavior; none of the analysis considered 
there is suitable for probing these issues, which I begin to take up here. The 
discussion will follow closely an earlier treatment t53~ of this material by 
the author. At a certain point I also make contact with an still earlier 
formalism of Stillinger and coworkers, 124' 25~ as described at the end of this 
section. 

The first point will be that although in nature one finds no longer- 
ranged interaction than the Coulomb interaction, the usual arguments that 
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lead one to conclude that  certain types of long-range potentials will give 
rise to mean-field critical behavior  do not apply to the Coulombic  case. 
Such arguments  apply most  readily to a potential  consisting of a repulsive 
core and an attractive B a k e r - K a c  tail 

~o(yr) = 7~f(?r) (2.11a) 

in the limit y ~ 0, if - f ( r )  is a nonnegative,  decreasing function of r with 
finite volume integral. Here d is the dimension. 

The somewhat  different case of an attractive potential  tail of the form 

qa(r) = A(a/r) a+p (2.1 lb )  

with 0 < p  < d/2 will also give rise to mean-field thermodynamic  behavior,  
as first shown by the results of Stell. cs4)' 3 

In both cases, the mean-field nature of the thermodynamics  can be 
understood theoretically on the basis of the very long range of q~(r). Each 
particle feels the pair  potential  of  an arbitrari ly large number  of its fellow 
particles, and it is not hard to demonst ra te  that  fluctuations a round  the 
resulting average field that  each particle feels can be neglected. (One such 
demonstra t ion will be outlined below.) It will be argued that when one 
does observe mean-field behavior  in Coulombic  criticality it is because of a 
far less direct and less obvious effect of field on correlation than in the case 
of (2.11). 

It is convenient in examining this issue to use Orns te in-Zern ike  
formalism. In the case of a spatially uniform system of one species of 
particle, in which the one-particle density function p(r)  is a constant  
number  density p, one has a radial distribution function g(r), a total 
correlation function h ( r ) = g ( r ) - 1 ,  and a direct correlation function c(r), 
related to h(r) through the convolut ion equat ion 

h(rlz)=c(r12)+P f h(rt3)c(r23) dr3 (2.12) 

in real space, or the equivalent algebraic relation, 

h(k ) = e(k )/[ 1 - pc(k)] 

in Fourier  space, where 

1 
a(k) = (---2n)d f a(,') e i rk  dr 

3 See ref. 55 for the initiation of the formalism used in ref. 54. 

(2.13) 

(2.14) 
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There is a second relation that introduces the "tail" of the direct correlation 
function T(r), 

c(r) = q~(r) + T(r) (2.15) 

Equation (2.15) explicitly involves the pair potential through the function 

�9 (r) = - /~o(r)  (2.16) 

with /3 = 1/kB T (kB is Boltzmann's constant and T is the absolute tem- 
perature). Moreover, (2.15) need only be considered for or> 0 in a system 
with a hard-core potential of diameter a, since with the boundary condition 

g(r) =0 ,  r < a  (2.17) 

c(r) need only be prescribed by (2.15) for r >  a in order to yield a closed 
set of equations when taken together with (2.12). The T(r) is a functional 
of h as well as a function of r and p and, in principle, is completely deter- 
mined by r, p, and h(r). In practice the precise dependence of T(r) on r, p, 
h is intractably difficult to determine and one must be content with seeking 
limiting and asymptotic relationships of various degrees of generality on 
the basis of available cluster-integral, ~561 functional Taylor-series, {54) hyper- 
vertex (ref. 33, Appendix), and renormalization-group r representations 
of T. 

The formalism generalizes easily to a mixture of several species of 
particles. With i, j, and k species indices, (2.12) becomes 

ho.(r l2) = cij(r) + ~ Pk f hik(r12) Ckj(r 32) dr3 (2.18) 
k 

and (2.15) becomes 

cu(r ) = ~o(r)  + T,j(r) (2.19) 

In the primitive model, there are two species, i = a, b and j = a, b, and 

COUL. �9 (2.20) q)o.(r) = ~0~S(r) + q0,j (r) 

where q)HS(r) is the hard-sphere potential 

HS {O  f~ r < a ~  (2.21) 
q3u ( r )=  for r > a  U 

The com., , q~0 tr/is.expressed in terms of valences s, and charge numbers Is, I, 
with the electroneutrality condition 

2 Pi Si = 0 (2.22a) 
i 
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In the RPM this is the first of a set of electrostatic odd-moment conditions 
that are satisfied by symmetry 

pis~ ' - ' ,  I =  1, 2 .... (2.22b) 

In (2.20), COOL, , r tr) is given by - s i J ( r  ) s.i, where 

J( r ) = - q2 /sr (2.23) 

In the highly symmetric RPM, g0 = a and 

P a  = P b  = p/2 , I s .  I = I s b l  (2.24) 

As a result of the symmetry the density-density and charge-charge correla- 
tions can be written in terms of simple sum and difference combinations of 
the h 0 and c 0. One has 

hs = (ho~ + h,b)/2, hD = (haa - h,b)/2 (2.25) 

and the inverse relations 

h a ~ = h s + h o ,  h ~ b = h s - h  D (2.26) 

with corresponding relations for the c's, O's, and T's. Both the pair hs and 
Cs and the hD and cD satisfy their own OZ equations that are totally 
decoupled with respect to one another: 

hs(rl2 ) = cs(ru)  + P ~ hs(rl3) Cs(r23) dr3 (2.27) 

ho(rl2 ) = CD(rI2 ) + P f hD{rl3) Co(r23} dr3 (2.28) 

The coupling appears through the equations 

cs(r) = ~s(r)  + Ts(r; pi, h o] (2.29) 

CD(r) = Do(r)  + To(r;  Pi, h~j] (2.30) 

The ( ; ] notation is used here to emphasize that T is a functional of Pi and 
h o as well as a function of r. Notice that ~ s ( r ) =  -fl<oHS(r); the Coulomb 
term has disappeared fi'om (2.20). Notice also that Ts, through (2.25) 
and (2.26), can be reexpressed as a functional of p, hs, and hD, which will 
continue to be designated as Ts: 

Cs(r) = -fl~pnS(r) + Ts(r; p, hs, hD] (2.31a) 
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Moreover, (2.31a) need only be used for r >  tr, where one has simply 

cs(r) = Ts(r; p, hs, ho]  (2.31b) 

which, along with Eq. (2.27) and the boundary condition 

hs(r ) = - 1 for r < tr (2.32) 

forms a closed set of equations if Ts is prescribed for r > a. 
For some purposes it is more convenient to work not with the tail 

functions T,j, To,  and Ts, but the parts of c 0, Co, and Cs that are excess 
to only the Coulomb parts of ~0, ~ o ,  and q5 s, respectively, rather than 
the full ~'s. These shall be designated as the "remainder" terms R U, Ro,  
and Rs. One sees that R, 7 = _flepHs + Tq, so RD = To. Because ~s  has no 
Coulomb part, 

cs(r) = Rs(r; p, hs, ho]  (2.33) 

for all r. For Co one has, also for all r, 

Co(r) = ~D(r) + Ro(r ;  Pij, hij] (2.34) 

Here Ro, like R s, can be reexpressed as a functional of p, hs, and hD 
rather than the p~ and ho: 

co(r) = ~ D ( r ) +  Rt~(r; p, hs, ho] (2.35) 

As already noted, the Coulomb term tb D has disappeared from the equa- 
tions relating hD and Co; its effect is felt only through the hD dependence 
of RD. It is therefore important that one tries to understand the behavior 
forced upon hD by the q~D, which in Fourier space is given by 

~D(k) = --F~/pk'- (2.36) 

where Fo is the Debye-HiJckel inverse screening length 

r g = 4nflq 2 ~ p ~s~ /~ (2.37) 
i 

which in the RPM is just 4nflq2psZ/e, with s2= Isos01, which is usually 
taken to be unity. A crucial aspect of the hD behavior is dictated by electro- 
neutrality, which implies a zeroth moment condition on 1 + phD(k). In the 
RPM this is simply 

1 + pho(k = 0 ) = 0  (2.38) 
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This has long been known. There is also a much less obvious second- 
moment condition, first deduced and demonstrated by Stillinger and 
Lovett, (23) which in the RPM can be written, along with (2.38), as 

lim [1 + phD(k) ]  = k2/I "2 = ~ D ' ( k ) / P  
k ~ O  

(2.39a) 

Alternatively, the second-moment condition can be written as 

p f r2hD(r) dr = - 6 / F  2 (2.39b) 

Notice the remarkable appearance of the inverse of I~ D in (2.39a). Stillinger 
and Lovett also called attention to the fact that the dielectric response 
function e(k) of the RPM can be written in terms of hD(k) through the 
simple relation 

go = F 2  
e(k) 1 - ~ - T  [1 +phD(k)]  (2.39c) 

where go is the dielectric constant of the continuum solvent that one has in 
the RPM; we denote this simply as e elsewhere throughout this article. 
Equation (2.39c) immediately implies that as k ~ 0 ,  lim eo/e(k)=0,  so 
lim e(k) = Go, which is what one expects in a conducting electrolyte such as 
the RPM. 

One expects the true charge-charge inverse screening length F to 
become Fo for fixed fl :~ 0 in the p --, 0 limit. In the same limit, one expects 
the Debye-Hfickel result (for both k --* O, Fo :/: 0 and Fo ~ 0, k ~ 0) 

or  

and (for large r) 

k 2 
1 + pho(k)  .~ 1. 2 + k2 (2.40a) 

- t o  
pho(k)  ~ 1.,2 + k2 (2.40b) 

_ F ~ e - r O  ~ 
phD(r )~  (2.40c) 

4ru" 

As one goes to higher values of F o, one expects the charge-charge inverse 
screening length to depart from Fo, ~3~ and (2.39a) puts powerful 
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constraints on the expected form of the resulting hD as this departure takes 
place. Considering only terms through k 2, one is led to 

k 2 -t- . . .  l 

1 + pho(k  ) -~ Fo 2 + a2k2 + . . .  a2 

(where a 2 > 0), or 

where 

(Fola) 2 
a2[(Fo/a)2 + k2 ] t- -.. (2.41a 

p h D ( k ) ~ ( ~ _ l )  F4/F2 
F2 + k2 t- (2.41b 

F 2 = F~/a 2 (2.41c 

4 ") F / r ~  exp - Fr 

4m" 

so for large r, one expects 

ph o( r ) "~ (2.42a 

instead of (2.40c). 
For sufficiently large Fo, phD(r) c a n n o t  remain negative for all r, 

however. Like (2.39a), this was first demonstrated by Stillinger and 
Love t (  23~ and had been earlier found on the basis of plausible assump- 
tions.124.25) It suggests that the denominator of (2.41a) becomes singular in 
complex k space not at k = + iF o as in the case of the "Debye pole" charac- 
terizing (2.40) or at k = _+iF as in the case of (2.41) with F real, but at 
k2= F c or k=--/ 'R-----iF, where F c is complex with Fc =/~R Jr  iF. (By 
dominant singularity, the one with the smallest imaginary part is meant.) 
Hence in real space one expects a change from the monotonic decrease in 
ho(r)  as r--* ov characterized by (2.42a), or more generally by 

pho(r)  ,~ A(exp - Fr)/r, Fr >> 1 (2.42b) 

to oscillatory behavior characterized by 

phD(r ) ,~ B(exp - Ft') cos(F R r +  0)/r, Ft" >> 1 (2.42c) 

where A, B, and 0 depend upon the residue of the dominant pole at 
k = FR + iF. 

In the MSA, ~58J as well as a variety of other approximations that have 
been studied 159~ (including the one considered in detail by Lovett and 
Stillinger ~6~ one finds the pole of the dominant singularity leaving the 
imaginary axis in complex k space--with the attendant change from 
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(2.42b) to (2.42c) in real space--  when Fo increases to a threshhold value, 
Fo = (F0)DL, where the (F0)DL defines a "disorder locus" that differs some- 
what in the different approximations. Hence, in these approximations, the 
locus in the p, T plane that marks the onset of the oscillatory behavior is 
simply p = c o n s t .  T. One expects the exact behavior of the RPM to 
similarly include a "disorder line" in the p, T plane marking the onset 
of oscillatory behavior, but there is no reason to assume it is a straight 
line. 

As Fo further increases, F R increases and F begins to decrease in the 
MSA and similar approximations. This, too, seems likely to mirror the 
exact RPM behavior. In the MSA, F becomes zero only for/3 = c~, but in 
other approximations F = 0  is attained for a finite F o =  (Fo)N associated 
with a n o n z e r o  _F' R. As we pointed out in ref. 61, 4 such a (F0)N defines a 
"2-line" of N6el points, and it is not all clear whether one should expect 
such a 2-1ine in the exact behavior of the RPM. As noted there, one might 
expect with considerably more confidence such a 2-line when one replaces 
the Coulomb interaction J ( r ) = - q 2 / r e  in Eq. (2.23) by a Yukawa inter- 
action J(r)= - q 2 ( e x p - a r ) / e r  with a large a; the resulting Yukawa RPM 
(YRPM) is a continuum analog of the nearest-neighbor spin-1 Ising anti- 
ferromagnet where the evidence for such a locus is very strong. However, 
when one goes to the continuum analog, one loses the periodicity of the 
lattice, which helps ensure the N6el-point singularity, so that one cannot be 
certain that the YRPM will have the 2-line even for large a. Assuming that 
it does, the behavior of the 2-line as a ~ 0 remains a largely unexplored 
issue. 

As long as Fr  one would expect the dominant singularity of ho(k ) 
to be a pole, but if F - - , 0  (with either /"R----~0 o r  / " R ~ 0 )  the generic 
behavior of such correlation-function singularities would lead one to expect 
branch-point behavior when F =  0 associated with a confluence of poles in 
the denominator of (2.41a) in the limit F ~  0). In r space this confluence 
would dictate the behavior of hD for Fr << 1, r>> a, rather than for the 
regime Fr >> 1 in which one expects (2.42b) or (2.42c). As one approaches 
a 2-line of N6el points, if one exists, one might expect phD(r) to have the 
form, for all r >> a, 

phD(r) ,~ F(Fr) cos(F R r +  O)/r I + u~o) (2.43) 

in keeping with known results for the Ising antiferromagnet, for which in 
three dimensions, r/(D) is a very small positive number. 

4 This work appeared in shortened form as ref. 53. 
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In the Ising case, one expects 

fconst-x~(me-X for x >> 1 
F(x) 

~const for x << 1 

We return for a moment to the disorder line, which will only be realized 
in the one-phase region of the p, T plane. For the RPM, one would expect 
it to meet the coexistence curve in that plane. In Stell et aL (z9) the MSA 
disorder line was plotted with the various coexistence curves studied there, 
and it meets most of them quite close to their critical points. In particular, 
it meets the MSA coexistence curve on the low-density side of the MSA 
critical point, so that at criticality, the MSA hD(r) already has the oscillat- 
ing form given by (2.42c) rather than the monotonic form of (2.42b). This 
could well be the case for the exact RPM hD(r), too. 

If there were a 2-line of N~el points associated with the exact RPM 
ho, it, too, would be expected to emerge from the coexistence curve at a 
higher density than the disorder line. Generically, one expects special criti- 
cal behavior, such as tricritical behavior, at the point at which such a 
).-line meets a coexistence curve, and Kholodenko and Beyerlein ~62~ have 
suggested that the RPM critical point is a tricritical point induced by a 
2-1ine emerging from the top of the coexistence curve. It seems to me likely 
that if there is such a ).-line at all in the RPM, it meets the RPM 
coexistence curve at a considerably higher density than that of the critical 
point appearing at the maximum coexistence temperature, so that it would 
not induce tricriticality at that critical point. 

Since criticality is defined most directly in terms of the vanishing of the 
inverse correlation length K associated with the density-density correlation 
function hs(r) [rather than in terms of ho(r) and F ]  further discussion of 
criticality shall be deferred until after a consideration of the expected 
behavior of hs(r). 

Equation (2.39) is a small-k result. Because ho(r) is finite for r = 0 [in 
fact hD(r ) = 0 for r <  a ]  one also has the large-k result 

lim hD(k) = 0 (2.44) 
k ~ 3  

Small-k forms such as those shown in (2.41) violate this condition unless 
additional terms of order higher than k 2 are appropriately taken into 
account. 

In a simple one-species fluid described by Eqs. (2.12)-(2.17) liquid-gas 
phase separation and criticality imply the vanishing of the inverse iso- 
thermal compressibility, or 

fl OP/Op = O, fl fixed (2.45) 
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where P is pressure. This is directly given by 

1 - p c ( k = O ) =  [1 + p h ( k = O ) ]  -~ = 0  

since 

(2.46) 

fl OP/Oplt~ = 1 - pc (k  = 0) (2.47) 

In the RPM, criticality continues to imply (2.45), and (2.46) and (2.47) are 
replaced by 

1 - p c s ( k  = 0 ) =  [1 + p h s ( k = O ) ]  - l  = 0  (2.48) 

and 

OP/Oplp = 1 - pcs (k  = O) = 1 - p R s ( k  = O) (2.49) 

which involve the "sum" functions introduced in (2.25). Before going 
further in the investigation of RPM criticality it is instructive to point out 
the way in which it is fundamentally different from that of systems in which 
the pair potential is given by (2,11). In Fourier space, (2.1 l a) becomes 

q)(k) = lim f ( k / ~ )  = const- 6k, o (2.50) 
7 ~ 0  

where 6k, o is the Kronecker delta, 6k, o = 1 for k = 0, and 6k. o = 0 otherwise, 
while for thermodynamic states that remain in a single phase it can be 
shown that 

lim T(k;  p, hi  = TREY(k; p, hi  (2.51) 
;, '~0 

where  T REF is the tail function [defined in (2.15)] of the repulsive-core 
reference system evaluated at the p and fl of the full system. 

It is the behavior of q~(k) that determines the (mean-field critical 
exponents through (2.15), with TREF(k; p,h] at k = 0  providing only 
the reference-system thermodynamics, which is wholly free of critical 
fluctuation. 

The case of potentials of the power-law form given by (2. l lb)  is quite 
similar when 0 < p  < d/2. One has for small k 

q~(k) ~ const- Ikr e (2.52) 

while T ( k ; p , h ]  proves to be of higher power in k, as first shown by 
Stell; ~541 its role is again limited to providing a background term 
T ( k = O ; p , h ]  in the denominator 1 - p c ( k )  of (2.13) that determines the 
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thermodynamics in the critical region, which is therefore again mean-field- 
like. F rom the result 1 -  pc(k)~const. Ikl p that follows, the correlation- 
exponent relation 2 - q = p is obtained, so the correlation-range behavior is 
not "mean-field-like" in the sense in which that term is sometimes used to 
describe the result r /=  0. 

In the RPM,  in contrast  to the cases of the two long-ranged potentials 
just discussed, the T s function is not just a passive background te rm-- i t  is 
the whole story. 

In considering this story, it is convenient to think of Eqs. (2.27), 
(2.29), (2.31), and (2.32) as describing the density-density correlations of a 
hypothetical equivalent one-species neutral system, with a c equal to c s 
written not as (2.29) but as 

CS = I~)EQUIV "}- TEQUIV = ~EQUIV - -  ~HS + REQUIV (2.53) 

where -kTcb E~ is the pair potential of this equivalent system. For  r > a 
the ~EQtnV comes entirely from the hE> dependence of Ts in (2.31a) and 
it is therefore natural to identify T s in which h D is set identically zero as 
T zQu~v and to define ~EQUlV through the relation 

Cs[p, hs, ht>] = (~)EQUIV ..1_ T S [ p  ' h s  ' 0 ]  (2.54) 

which means, from (2.31a) and (2.33), 

~EQUIV = ~RS + Rs[p, hs, h o ]  - Rs[p, hs, O] (2.55) 

One now can make the simple but important  mathematical observation 
that Rs[p, hs, 0]  has exactly the functional dependence upon p and hs that 
the R of a one-species system has on p and h. Hence one can also write 

cs[p ,  hs, he,] = I~)EQUIV - -  I J ~ j H S  Jr" Rip, hs]  (2.56) 

It follows, for example, that if one discharges the RPM,  the RPM 
Rs = (R + + + R + _ )/2 becomes the hard-sphere R because q~ZQU~V ~ qsRS, 
h D ~ 0 ,  and h s ~ h  Rs �9 Or, if one puts into Rs[p, hs, O] the hs of a one- 
species argonlike system with a hard-core potential having an attractive 
Yukawa tail, then Rs[p, hs, 0]  at this argon-like critical point will be the 
Rs[p, h] of that system. For  such a system, it can be verified that one 
expects, at criticality, 

R(k;p,h]=const.k 2-", k~O 

R(r;p,h]=const.h'~(r), r ~ov 
(2.57) 

822/78/I-2-16 
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where r/ and 6 are the critical exponents in standard notation. (This 
behavior of R was first given in ref. 54 and can readily be checked against 
known results for the Ising model.) Thus, in the formalism developed here, 
the critical behavior of the RPM hinges entirely on the properties of 
~EQUW, in which all of the effects of nonzero h D sit. One of these effects is 
to bring into existence the critical point in the first place. One can get 
insight into how this must come about by looking at 05 EQu~v in the 
Debye-Hiickel limit, p--* O, fl fixed, where the dominant contribution to 
~EQUIV is given by 

l 9 (~EQUIV(I . )  -~- __ f l f#EQUIV(I . )  = (~HS( / . )  _[_ ~h~D(/. ) (2.58) 

This represents an attractive potential q)EQUIV that is strongly p and fl 
dependent. If one uses the expression of (2.40) for hD in (2.58) and then 
obtains the resulting thermodynamic contribution of ~ ~EOmV(r)dr, one 
finds it is of order /--3. It is exactly this term that is responsible for the 
celebrated Debye-Hfickel limiting-law p3/2 term (=F~/12n)  in the free- 
energy density expression for the RPM. 

The p3/2 term becomes instead a p3/2 term, where Pv is free-ion density, 
if one takes explicit account of association, forcing the critical point to a 
considerably higher density. The hD retains the form of (2.40c) for r >> ~, 
but with F not equal to Fo. Instead F is equal to an inverse Debye length 
appropriate to only the free ions, so F 2 =47zpvflq2/e. Moreover, an extra 
very short-ranged contribution hgss~ of h D develops for r equal to a 
and a bit larger than a, which represents the contribution to h D of 
associated pairs of ions and higher clusters. The part of ho representing free 
ions is also short-ranged; it is exponentially damped for f ' ~ 0 ,  and if one 
assumed f ' = 0 ,  it would vanish because of the vanishing f 'o prefactor in 
the functional form of (2.40c). For F - -0 ,  the only contribution to hD(r ) 
remaining would be from the part hgss~ representing fully associated 
clusters, which one expects to be at its maximum for a ~< r~< 2~ and essen- 
tially zero for r >> 2m 

The hD(r ) that emerges from this phenomenological view of ionic 
association is an hD(r) that would remain short-ranged even if f ' -~  0, and 
this continues to be the case when one superimposes association via the 
law of mass action upon theories that are more accurate for larger Fo than 
the simple linearized Debye-Hiickel theory. If F-~ 0, the contribution to 
hD(r) coming from free ions will vanish, while the contribution hgss~ 
from the clusters of associated ions will be negligible for r >> 2a. We note, 
however, that if this picture is taken seriously, F =  0 signifies the absence 
of free ions and hence would appear to be incompatible with the 
Stillinger-Lovett conclusion that e(0)= ov and the Kosterlitz conclusion 1631 
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that no states are insulating for d >  2 in Coulomb-gas models such as the 
RPM. 

If one assumes a N6el-point singularity exists, one has (2.43) and 
1 2 ~hD(r ) is no longer of short range. However, as already discussed, one 
expects this case to be associated with a 2-line of N6el points that would 
presumably bear an unmistakable signature, both experimentally and in 
simulation, that has not been observed in the vicinity of the Case I critical 
point. If one instead assumes that hD(r) decays monotonically with 
increasing r, then the further assumption that ht~(r) is unscreened ( F =  0) 
would require decay of the form 

ho(r ) ~ Dr-PL(r), r >> a, p >/5 (2.59) 

[times a term of O(r ~ expressible in terms of logarithms in the borderline 
case o f p  = 5-] in order for hD to satisfy (2.39b). Although (2.59) represents 

1 2 . unscreened decay, we see that it yields a ~hD(I) term of O(r-~~ which is 
quite short-ranged. 

The full behavior of ~ZOU~V is of course much less clear than that of the 
1 "~ limiting form _vh b. Using (2.55), one has a formally exact hD-bOnd, hs-bond, 

p-vertex cluster expansion of ~EQU~v from that of Rs[p, hs, h o ] -  
Rs[p, hs, 0], and if it is used with (2.42) or similarly plausible forms of ho 
under the assumption F:~ 0, along with the expected homogeneous form for 
hs near a critical point, r >> or, 

h H = f ( K r ) / r  d - '  (2.60) 

then one finds that each term in the cluster expansion gives rise to a long- 
1 "~ range contribution of range not greater than _vh b and none of these 

1 "~ contributions vanishes more slowly than ~h b. If one assumes F--,  0 at criti- 
cality, this is still true if one also assumes (2.59). Hence, no compelling 
evidence appears to emerge from such an analysis that r becomes 
long ranged even if one allows for the possibility that F ~  0 at criticality. 
As a result, it was concluded in ref. 53 that one can reasonably expect the 
RPM to be argonlike in its criticality. 

Some additional remarks are pertinent: 

(i) One cannot hope to get the properties of Rs[p, hs, hD] for 
tcr << 1 or k/K<< 1 directly from its hs-bond, hD-bond, p-vertex expan- 
sion. In ref. 52 and here, use was made of the fact that the difference 
Rs[p, hs, hD]-Rs[p,  hs, O], which defines ~EQUIV, is amenable to a 
term-by-term analysis, from which it follows that q~EQUXV remains short- 
ranged under assumptions I regard as plausible. Of course this is clearly far 
from a proof that the RPM criticality is argonlike. Such a perturbative 
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analysis is at its most convincing when used with an hD that one can 
assume remains screened at the critical point with F:~ 0, and in ref. 52 it 
was simply assumed that F:~0 in the RPM without further discussion. As 
noted above, this assumption is a natural one in the context of the 
phenomenological picture in which F = 0  is identified with an absence of 
free ions and a resulting insulating state, which one does not expect at non- 
zero temperature in the RPM. (631 

(ii) There are alternative representations of Rs(r) from which one 
can expect to get sharper results. One of them comes from extending the 
functional Taylor series used in ref. 54 to investigate nonionic criticality 
and in ref. 64 to treat wetting. Although particularly appropriate to the 
critical point, that representation has not been used here because its formal 
derivation raises some delicate questions concerning the introduction of 
single-ion chemical potentials which require further theoretical analysis. 
Another expansion that has some important advantages over the h-bond, 
p-vertex expansion is the hypervertex resummation of Rs[p, hs, ho] 
obtained by extending the corresponding resummation of R[p, h] dis- 
cussed in ref. 33, Appendix. Its use suggests that ~EQUW is in fact of 
significantly shorter range than the O(r-~~ estimate of ~ 2 . ~ho(J ) given above. 
This representation in turn forms the starting point 1571 of a renormalization 
group study of the primitive model being made by Qiang Zhang and the 
author. The results of that study lend strong support to the conclusion that 
the RPM is argonlike in its critical properties, and will be reported else- 
where. 

(iii) The idea of regarding the gs of a symmetric ionic fluid such as 
the RPM as the distribution function of a hypothetical one-species non- 
ionic fluid can already be found in the work of Stillinger and his 
coworkers/~4'25J Unlike the author's work using the decoupling of the 
Ornstein-Zernike equations for gs and go as a basis, the approach of refs. 
24 and 25 uses Kirkwood's charging-parameter hierarchy, in which an 
s-ion distribution function g~2 ..... is expressed as a functional of the (s + 1)- 
ion distribution function g12 .... +~. Plausible asymptotic estimates of gu and 
gok yield in refs. 24 and 25 an integral equation for gs involving an effective 
pair potential ~a obtained from an integration of ho over ft. One of these 
estimates rests on the assumption that go is screened for all ft. The 
resulting qJ0 is argonlike. 

2.2. The Asymmetr ic  Case 

In Section 2.1 an analysis of RPM criticality was given in terms of 
the Ornstein-Zernike formalism, in which it was shown that the extreme 
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symmetry of the RPM makes it possible to consider the density-density 
correlations as if they belonged to a one-species fluid with an effective 
potential brought about the charge fluctuations. This is not true for the 
more general unrestricted primitive-model (UPM), in which there can be 
asymmetry as a result of the anions and cations having different charge 
numbers Is,-[ or different diamter aii. The restriction to a single anion 
species A and a single cation species B shall be retained for simplicity. The 
treatment of the UPM below follows an unpublished development of 
Zhang and Stell. 

In the UPM, Eqs. (2.18)-(2.23) of Section 2.1 still hold, but now in 
general the charge-charge correlation function hq is given by 

p 2 h q  = ~ ,  P i P  f i i s j h i j  (2.61) 
6 

while the density-density correlation function hp is given by 

p2hp = ~ pepjh~ (2.62) 
o 

It is also natural to introduce a corresponding density--density generaliza- 
tion of the direct correlation function Cs and of Rs. We have 

One can write (2.63a) as 

p2cp =~pipjc~ (2.63a) 

p2cp = p2Rp = ~ pipjR o. (2.63b) 
ij 

since one has from change neutrality 

_ _ _ C O U L  . ( 2 . 6 4 )  
PiDj([.)i j  : U  

ij 

The Stillinger-Lovett moment conditions still hold t65~ as 

o r  

lim [Is.sh I P + P2hq(k) ] = Isas~l pk "-/Fo 
k ~ O  

(2.65a) 

lira [1 + phq( )/IS~Sb [] = k-/Fff (2.65b) 
k ~ 0  
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One can also write the second-moment condition a s  (6~ 

q,qiP,& I r2hiJ(t') dr = - 6  ~ Piq~ /F~ 
q i 

(2.65c) 

and (2.39c) becomes 

So = 1 F~ I Ph~(k)l (2.65d) 
~(k) --U- 1 § Is~ J 

In employing these relations, the identity which holds when i =  a, b and 
j=a,  b 

~p i s~=p IS,SbI=--pS,Sb (2.66) 
i 

is useful to keep in mind. 
One also has a somewhat stronger zeroth-moment condition associated 

with summation over the charges of only one of the particle pairs, 

k ~ O  

The equations for the charge-charge and density-density correlation func- 
tions do not in general decouple as they do in the RPM (for which hq and 
hp become the ho and h s introduced in Section 2.1 ). As a result, the general 
algebra relating the h,~ and hp to the R0 and q~0 is much more complicated. 
It simplifies considerably in the special case 

p.[1 -- p,,Ro.(k)] = phi1 - pi, Rbb(k)] (2.68) 

for which an OZ equation for hq decouples from the rest of the OZ equa- 
tions. Equation (2.68) is obviously true in the RPM by symmetry, but it 
seems unlikely to be realized for all k otherwise. If one could tune the 
charge numbers s,, and sh as continuous variables, one might expect to 
have (2.68) satisfied at the critical point (at least for k = 0) for some set of 
charge numbers and diameters that include the RPM values s , = - - S b ,  
a~/=a. We shall refer to the case in which (2.68) is satisfied, at least for 
k = 0 ,  as the case of special symmetry (SS) and cases in which it is not 
satisfied for any k as cases of ordinary asymmetry (OA). 

It is useful to introduce the following auxiliary functions of the Rij: 

X(k )=  1 --p,,R,,a(k)--pbRbh(k)+p,,pbR,.,(k ) Rbh(k)--p.pbR2t,(k) (2.69) 
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In the RPM,  X(k) factors into a product  of charge-charge and density-  
density terms 

X(k) = [1 - pcs(k)] [1 - pRD(k)] (2.70) 

and vanishes at k = 0  at critical [because 1 - p c s ( k = O ) = O ] .  In the OA 
case, there is no such factoring and one can show that X ( k = 0 ) ~ 0  at 
criticality. 

One introduces also 

Y(k ) = p -- ~ p,piR~j(k ) (2.7 la) 

From (2.63b) one sees that 

r(k) = p[1 - pep(k)] (2.71b) 

Thus, as in the RPM,  the condition Y ( k = 0 ) = 0  is the condition of 
criticality even in the asymmetric case. 

In terms of the functions just introduced one has 

p2hq(k) Y(k} ab-I(k) 
P + - -  - (2.72) 

ls.sbl Y(k)+ X(k)r 

N(k) 
P + p2h~ = Y(k) + X(k) r  (2_73a) 

Here for notational simplicity we introduce the positive term 

e ( k )  = r g l p k  2 (2_73b) 

(which reduces to - - r  in the symmetric case) and 

N(k)=p'-+ {p--p.pb[R..(k)+Rbb(k)--2Rob(k)]} q~-~(k) (2.73c) 

There appears to be nothing in the structure of the R o. that suggests that 
N ( k = 0 ) = 0 ,  so N ( k = 0 ) : ~ 0  will be assumed. In the SS case, one can 
factor X(k), 

X(k) = Y(k) Z(k) (2.74) 
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where 

4p , , pbZ(k )  = p -- p]R, ,a(k)  -- p~Rbb(k)  + 2p, ,pbRab(k) (2.75) 

Hence in the SS case the Y(k )  can be factored out of the denominator of 
(2.72), canceling the Y(k )  in the numerator, leaving 

p + p2h,;(k) _ q~-~(k) (2.76) 
Isosbl 1 + Z ( k )  q ~ - ' ( k )  

The denominator of (2.73) becomes Y(k)[-1 + Z ( k )  ~ - ' ( k ) ] ,  with the 
l + Z ( k = O ) c b - ' ( k = O )  expected to remain nonzero. In the RPM case, 
there is further simplification, and 

p + p2hp(k) = p 2 / y ( k )  (2.77) 

where p Z ( k )  = 1 - pRD(k )  and Y(k )  = p [  1 - pcs (k ) ] .  
Away from the SS case, the story is very different. Since (2.72) and 

(2.73a) share the same denominator, h u and h o will have the same correla- 
tion length. But as we shall see the Y ( k ) c b - ' ( k )  in the numerator of (2.72) 
not present in (2.73) gives rise to a factor not found in hp that tends to 
strongly a t t e n u a t e  hq(r) for large r as the critical point is approached. 
Moreover, the c/ , - ' (k)  represents a k2/F2 o term in the denominators of 
(2.72) and (2.73a) as a result of the Coulombic interaction that can be 
expected to yield mean-field-like behavior. To see these things, it is useful 
to introduce a small-k representation for Y(k ) /p  [ =  1 - p e p ( k ) ]  that cap- 
tures its behavior at critical (i.e., K = 0 )  as well as its near-critical 
dependence on tc as k--,  0. To this end we use a Fisher-Burford-type 
representation 166~ and write 

Y(k ) /p  = 1 - pco(k ) = ao(K 2 + k2) '/2 + . . .  (2.78) 

Here a0•' is 1 -  pco(k = 0), the dimensionless factor c?flp/Op that describes 
the inverse isothermal compressibility of the system, while x is the inverse 
correlation length. The power t in (2.78) is the critical exponent 2 - q ,  
which is a bit less than 2 in argon; the value 2 typically gives rise to mean- 
field behavior. Inserting (2.78) into (2.72) yields the small-k result 

p2hq(k) PaoK'k2/Fo + . . .  

P + Is,,sh~- ao(~ 2 + k2) '/2 + X(O) kZ/Fo + . . .  (2.79) 
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[which manifestly satisfies the zeroth- and second-moment conditions 
given by (2.65)]. If one retains only terms through order k 2, one finds for 
Kr >> 1 

ph,l(k ) F 4 e - r r  
~ (2.80) 

[S,,Sb I V o r 

where 

F = = K2/Et/2 + x"X(O) /aoFo]  (2.81) 

Equation (2.80) is exactly the form (2.42a) one was led to expect in 
Section 2.1 on a similar level of approximation in the RPM. Here, as in the 
corresponding RPM expressions, attenuation represented by the F 4 in 
(2.80) is forced by the Stillinger-Lovett condition, which requires a second 
moment of ho(r )  that remains bounded (and in fact, fully prescribed) as 
F--+ 0 [see (2.39b) and (2.65c)]. The manifest coupling between F and x 
found in (2.81), however, is completely absent in the RPM. As one takes 
into consideration the effect of the higher powers of k neglected in (2.79) 
one finds greater complexity of functional form, including the expected 
possibility of oscillatory behavior associated with a dominant pole in 
complex k space that is complex. 

It should be noted that the term X ( O ) k 2 / F o  in the denominator 
shared by both hq(k) and ho(k)  in (2.72) and (2.73) has no counterpart in 
an Ising or Lennard-Jones system. In the Lennard-Jones case, for example, 
one expects the term beyond the a o ( x 2 + k 2 )  'a in (2.79) to be of order k 3, 
coming from the dispersion term ~ r  6 in the Lennard-Jones potential. In 
the Ising case, one expects the term to be of considerably higher order in 
k. If t = 2 in (2.79), one would expect mean-field critical behavior. Suppose 
instead that in the OA case one had an argonlike t of 39/20 or so. The 
competing k 2 singularity would still give rise to apparent mean-field 
behavior if X ( O ) / F  o were substantial in size, with X(0) expected to increase 
as the degree of asymmetry does and Fo  2 increasing rapidly with Debye 
length. However, it seems likely that the presence of the k 2 singularity 
might well dictate the absence of a k '  term with t < 2 altogether in the 
x--+ 0 limit. In an Ising or argonlike model, the only k 2 term present in a 
Landau-Ginsburg treatment in three dimensions is one coming from short- 
range interactions; upon renormalization the whole k z term shifts when 
~c = 0, to become a k '  term, t < 2. The presence of the k ' - /F  o term in (2.79) 
that cannot be so shifted appears to inhibit the fluctuations that are 
necessary to give rise to the shift in the first place. The precise degree of this 
inhibition is now under investigation by Zhang and myself; our preliminary 
result indicates that there is no shift, so that t = 2. 
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In the RPM,  the charge-density correlation function 

pZhqp(k) = ~ s,p,&ho.(k) (2.82) 
o 

is identically zero. In the OA case, however, it is not; it has an amplitude 
factor 

A=p,so[p,,Ra,(k=O)--pbRbb(k=O)--(pa--pb)R~b(k=O)] (2.83) 

that vanishes with vanishing asymmetry, and hqo(k ) shares the Y + X ~  -~ 
denominator  with hq(k) and ho(k). In that case the expression corre- 
sponding to (2.80) for hq is 

- -  A K 2 exp - rr 
(2.84) pZhqp(r) "~ 4~Fo r 

It is of interest to study the crossover from OA to SS behavior as the 
asymmetry factor 

w(k ) = (p=- Pb)-- P2.Ra~(k ) + PbRbb(k ) (2.85) 

goes to zero. For  this purpose it is convenient to introduce the difference 
between the function X(k) and the function Y(k) Z(k) into which it factors 
in the SS case, 

W(k) = X(k) - Y(k) Z(k) (2.86) 

which in fact turns out to be just the square of w(k) times a trivial factor 

4p~pb W(k) = - w(k) 2 (2.87) 

W ( k = 0 )  itself can be regarded as the asymmetry parameter in the 
problem; as such a parameter should be, it is invariant under the inter- 
change of the labels a and b. In terms of W(k), we have the small-(W/Y) 
expansion 

p+p2hq(k)_ ~ - ~ ( k )  

[sosb[ 1 +Z(k)  qs-~(k) 1 +  ( ) - ( )J ( ) \ Y ( k ) ]  

(2.88) 

The fact that the W appears always in the combinat ion W/Y here 
illuminates the nonuniform nature of the crossover. For  any nonzero W, 
no matter how small, W(k=O)/Y(k=O) becomes arbitrarily large as 
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criticality is approached [i.e., Y ( k = 0 ) ~  0]. Hence, sufficiently close to 
critical, the full form of (2.72) must be used and the effects of asymmetry 
that have been discussed here will appear. But the smaller the asymmetry, 
the closer one must come to the critical point to see them. 

3. SOLVENT-DOMINATED CRITICALITY 

The case of solvent-dominated criticality seems to be characterized by 
a quite different set of mechanisms than those considered in Section 2. In 
this case, in which some ions are introduced into a solvent that is already 
at or near criticality, there are several nontrivial problems to be resolved 
even before the ions are added. Since the best and most common solvents 
for ionic solute are dipolar, a central problem is whether the dipole-dipole 
interaction introduces any significant change in the sort of liquid-gas 
critical point one would have in a nonpolar fluid such as argon. More 
precisely, one can ask whether one expects the critical point to be in the 
same universality class as that of argon. In a 1974 study 167) I concluded 
that the answer is "Yes," and this answer appears to be consistent with the 
best experimental evidence (e.g., ref. 68). 

One can also inquire into the way the addition of a strong dipolar 
interaction can be expected to change the critical parameters and the shape 
of the coexistence curve of a simple argonlike fluid. For this purpose, a 
model fluid with a Stockmayer pair potential is especially useful; it consists 
of a Lennard-Jones potential plus an ideal dipole-dipole term. In a pair of 
studies(69, 7o) it was found that for the Stockmayer potential, lowest-order 
thermodynamic perturbation theory in the strength of the dipole-dipole 
interaction is inadequate, but that a Pad6 approximation that includes 
both the second-order and third-order terms appears to give satisfactory 
results. (The first-order term is identically zero for reasons of symmetry.) 
The Pad6 is constructed to give the expected linear response (33) to increas- 
ing dipole-dipole strength for large values of this strength. 

There is another important issue concerning fluid criticality that 
hinges on the presence of dipole-dipole interactions and is of crucial 
importance experimentally even for polarizable systems in which there are 
only induced dipole-dipole terms in the pair potential and no permanent 
dipole moment. This is the critical behavior of the dielectric susceptibility 
(i.e., the dielectric constant and the index of refraction) at the critical point. 
Its practical importance lies in the fact that modern methods of measuring 
the critical exponents [especially /3, which describes the coexistence 
curve shape, p-pc~const(To-T)  ~] use laser optics to measure the 
index of refraction e(~o) ~/2 (co is the optical frequency) and typically 
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assume a Lorentz-Lorenz-type law to relate e(og) and p. If e(oJ) were to 
have a significant critical anomaly itself, it would introduce an important  
error into the results of this approach unless the Lorentz-Lorenz relation 
were suitably corrected. I investigated this question with Hocken tT~ and 
with Hcye ~Tj) and found that e(co) shares the singularity of the internal 
energy at the critical point so that it remains finite as the critical point is 
approached, but its temperature derivative shares the weak "ct 
singularity," const I T -  Tcl-~, of the specific heat at constant volume. (In 
earlier work of Bedeaux and Mazur, it was concluded that the singularity 
would be stronger, with exponent 2 f l -  1. (72) Our results were derived for 
the case of nonpolar  fluids in which the molecules carro no permanent 
dipole moment,  but these conclusions can be shown to hold for polar 
fluids as well. Later work (73) using a purely thermodynamic approach 
further established a correspondence between the singularities of e and 
energy density, confirming the a singularity found by Hcye and Stell. 
[The singularity turns out to have a sufficiently weak amplitude in most 
fluids to be negligible in the relation between p and e(oJ) in the critical 
region. ] 

I move on now to a consideration of what happens when one adds 
ions to a solvent at or near its critical point. Nabutovskii et al. (74) c o n -  

c l u d e d  on the basis of a Landau-Ginsburg analysis that for a certain range 
of values of the Landau-Ginsburg parameters, one can have a very 
dramatic effect--the critical point would be lost, and in what had been the 
critical region one would have charge-density waves instead. Hcye and the 
author 175) reanalyzed the problem using a molecular theory and confirmed 
this possibility, and were further able to give a molecular interpretation to 
the Landau-Ginsburg parameter appropriate to an ionic solution. We 
found that such an effect could be expected to occur only if there were 
strong and strongly asymmetric ion-solvent association. To describe this 
mathematically is a bit tedious, even if one stays on the phenomenological 
Landau-Ginsburg level, but the physical picture seems clear enough: To 
support solvent-dominated criticality, one needs solvent-particle clustering 
over a wide range of length scales. If a substantial fraction of the solvent 
particles have ions of one charge sign adhering to them, but few or no ions 
of the other sign, then the like-charge repulsion that would be generated 
upon this cluster formation severely inhibits such formation, and hence 
inhibits criticality. Instead there is a tendency of the adhering ions of one 
sign and free ions of the other to position themselves so that around each 
"dimer" formed by a solvent particle and its adhering ion there is a layer 
of free ions of opposite charge, about which one can discern a further layer 
of dimers, etc. The result is a charge-density distribution that changes sign 
as it decays--i.e., charge-density waves. 



Criticality and Phase Transitions in Ionic Fluids 229 

To our knowledge, no such charge-density waves have been reported 
to be experimentally observed in ionic fluids. However, the approaches of 
Nabutovskii et al. and of Hcye and Stell, suitably extended, seem well 
suited to investigating theoretically a number of less dramatic but 
nevertheless important phenomena associated with solvent-dominated criti- 
cality, such as the shift in critical parameters when salt is added to the pure 
solvent and the attendant disappearance of the ct singularity in the heat 
capacity, t76~ The approaches of refs. 74 and 75 have not been applied to 
these issues. 

Hcye and Stell ctSI have already used their approach to consider 
the effect on solvent-dominated critical behavior of the charge-dipole 
interaction that is present when ions are added to a dipolar solvent. In 
the case of symmetric ions (aij= a, s~= - s j )  with ion-solvent interactions 
that preserve certain symmetries, one can extend the analysis of Sec- 
tion 2.1.2 to include solvent averaging. The resulting q~EOUW(r) includes an 

1 2 averaged squared charge-dipole contribution, ~hq,u, which is screened, t77' 78) 
In the Debye-Hiickel limit one knows explicitly, from earlier Hcye-Stell 
work, t78) 

l 2 ~hq,,(r) = Aq2/~2[ 1 + 21"+ �88 2] e - ; r / r  4 (3.1) 

where A is a constant, /~ is the dipole moment, and 2 = 2F o. One expects 
the same form to hold somewhat beyond the Debye-Hfickel limit, but with 
F o replaced by the true inverse screening length F. 1791 

In k space, the corresponding contribution to ~zQuw(k) is, for 
small k, 

EQUIV �9 q,, ( k )  ~ ( A q 2 ~ 2 r t / k ) [ k 2  - (2 z + 2k 2) arctg(k/2)] (3.2a) 

SO 

EQUIV .~, ~ -- An2q21a2k, 2 ~ 0, k fixed 
qbq,, ( k )  [_A5q21a2k2/3)~ ,  k ~ 0 ,  2fixed 

(3.2b) 

Thus as 2-- .0 one expects a crossover to the mean-field-like behavior 
characteristic of inverse-fourth-power potentials. 

In the solvent-dominated case, 2 will grow from zero as one adds salt 
to a dipolar s61vent, but the magnitude of the resulting contribution 
from q~qEQU~V to the thermodynamics of the solution will be negligible 
in the dilute-salt regime. However, the result indicates that in systems in 
which F is driven to be zero at a critical point (e.g., by asymmetry in 
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Coulomb-dominated fluids) the presence of charge-dipole terms may be a 
source of perceptible mean-field behavior when sufficiently large concentra- 
tions of both charges and dipoles are present. 

4. D I S C U S S I O N ,  C O N C L U S I O N S ,  A N D  T H I N G S  TO DO 

Of the several new results obtained in this work, perhaps the one with 
the greatest potential importance is the analysis pointing out the differences 
in critical behavior that can be expected in symmetric and asymmetric 
Coulomb-dominated criticality. 

Imbedded in the more general unsymmetric primitive-model case, the 
RPM is seen to exhibit an "accidental" decoupling of the charge-charge 
and density-density correlations because of its high degree of symmetry. 
One knows that universality class of criticality depends crucially upon 
range, dimension, and symmetry of the potential fields associated with the 
order parameters; it therefore should come as no great surprise if one finds 
that the RPM and the OAPM are in different universality classes as a 
result of differences in symmetry. The Zhang-Stell results appear to offer 
compelling evidence that this is the case, and further lead to the conclusion 
that the OA case exhibits mean-field-like critical behavior, in contrast to 
the argonlike behavior that they predict in the RPM case. 

The mean-field nature of the OAPM would be consistent with the 
intuition shared by a number of workers in the field that Coulombic Case I 
critical behavior should be mean-field-like, compared to the expected 
argonlike critical behavior of Case II or Case III  systems, in the categoriza- 
tion introduced in Section 1. In light of this, it is somewhat ironic that 
the RPM has for years been assumed to epitomize the generic case of 
Coulombic phase separation and because of its special simplicity has been 
widely studied in this regard--one sees now that the very simplicity that 
makes it attractive as a model may rob it of its status as a prototype in the 
study of Case I criticality. The conclusion that OA systems rather than the 
RPM should be regarded as showing generic Case I behavior helps resolve 
the contradiction between the expected mean-field behavior of Case I 
systems and the argonlike behavior of the RPM that seems to emerge from 
its theoretical treatment. 

In the primitive model, if the size and charge number of anions and 
cations are equal one has W(k)=-0, where W(k) is the asymmetry factor 
introduced in Section 2.2. But in real Coulombic fluids one can have asym- 
metry even if the size and charge numbers of the anions and cations are 
the same. In particular, symmetry can be broken either with respect to 
permanent electric moments (dipole, quadrupole,...) or polarizability. (For 
example, one such asymmetry would result from a positional asymmetry in 
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which the distance between the charge center and volume center is different 
in the anion and cation. This would give rise to a dipole-moment dis- 
parity.) Although we have not explicitly included ion-solvent interactions 
in our formalism here, a straightforward extension of our treatment that 
includes such terms shows that any disparity between anion-solvent and 
cation-solvent interactions will similarly give rise to contributions to 
the anisotropy parameter W(k=0) .  It seems worthwhile to scrutinize 
Coulombic fluids that show mean-field behavior but have no size or charge- 
number asymmetry for such "hidden" asymmetries, which can be large in 
magnitude. In particular, the N2226, B2226 organic salt investigated by 
Singh and Pitzer 12~ and Zhang et aL 17~ is worth checking for any such 
asymmetries, in light of its well-documented mean-field-like criticality. 

In addition to providing a potential key to the differences between 
argonlike and mean-field behavior in Case I criticality, the difference 
between the RPM and OA behavior brings to the fore some fuzziness in 
our current phenomenological understanding of insulating and conducting 
states as well as some gaps in their formal description. As noted in Sec- 
tion 2.1, the Stillinger-Lovett result e(k)--* oo for k---, 0 signifies that one 
has a conducting system. Phenomenologically, one expects this to imply 
the presence of free charges, which in turn implies screening, so that F #: 0. 
This picture appears to be confirmed by the Kosterlitz renormalization- 
group argumen(  63~ that there is no insulating state for nonzero tem- 
perature in a Coulomb gas above two dimensions. Our conclusion that in 
the unsymmetric case the inverse charge-charge screening length F goes to 
zero at criticality forces us to reappraise the phenomenological argument, 
since one still has the SL result ~(k)--* oo for k ~ 0, which implies a con- 
ducting system. Hence one would again expect free charges and screening. 
But this would contradict our conclusion F--* 0. 

We note, first of all, that the Kosterlitz argument, at least as it stands, 
does not explicitly address the issue of Coulomb-gas criticality, nor does it 
immediately apply to the asymmetric case, leaning as it does on the sim- 
plicity of the full symmetry of the Coulomb gas. It is clearly important to 
investigate whether the critical state is automatically accommodated within 
the framework of the argument, and what it yields when extended to the 
asymmetric case. 

With respect to the SL result, an explication of its status as / ' ~  0 
would be hetpful and perhaps could come from further development of the 
Kosterlitz argument. All the demonstrations and derivation of the SL result 
known to the author ~23"65's~ impose conditions, implicit or explicit, that 
prevent it from directly serving as a reliable guide to the structure of hq(k) 
and e(k) when k > F ,  and of hq(r) when F r <  1, f ~ 0 .  On the other hand, 
the SL condition yields a sharp result for any nonzero F, no matter how 
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small, on the second moment of hq(r), prescribing it as a finite quantity. 
This makes it attractive to embrace the conclusion that hq(r) must remain 
short-ranged as F-~  0, either in the sense of decaying more rapidly than 
r -5 as r--* ~ or in the sense of having oscillating decay, so that there is 
cancellation between positive and negative contributions to yield a finite 
second moment. This line of thought, when applied optimistically, pertains 
not just to k < < F  and Fr>> l, but to all k and r such that ak<<  1 and 
r > > a .  Such optimistic application underlies Eq. (2.59) as well as Fisher's 
discussion of his Eq. (A.5), and it leads one to conclude that one should 
take the SL condition seriously at a critical point, even if F =  0 there, by 
continuity. A more conservative approach is to reserve judgment on hq(k) 
and e(k) when k < F and hq(r) when Fr < 1, and to be prepared for a cross- 
over from conducting to insulating behavior as F ~ 0. Such an approach is 
not inconsistent with the conclusion that F: / :0  at the RPM critical point 
and F ~ 0  in the asymmetric case, and it keeps open the provocative 
possibility of an insulating state at criticality in the asymmetric case. 
Renormalization-group arguments appear to offer the most promising way 
to get into the small-Fr, large-k/F regime as F ~  0. 

As pointed out in Section 2.1, one expects a tricritical point at the end 
of a 2-line of N6el points in the spin-1 Ising antiferromagnet with a short- 
ranged antiferromagnetic exchange interaction J(r). What happens when 
one considers the off-lattice analog-- the Yukawa R P M - - a n d  lets the range 
of the Yukawa interaction become infinite is of great interest, since this 
gives the RPM. The lattice-system version of this limit is of interest, too, 
but cannot be expected a priori to be a reliable guide to the continuum- 
space behavior. One can hope to gain considerable insight into the 
possibility of unscreened oscillating hq(r) raised in this article through a 
study of this limit by means of simulation and judiciously chosen 
approximations. 

If the screening is strong (F  large), the effect of the resulting cavity 
contribution could be lost as a result of the competition it faces from the 
other contributions to S- t (k) .  In ref. 53 it was noted that an unscreened 
term would face competition from as-yet-unassessed n-body solvent- 
averaged cavity terms, n/> 3, which could cancel the effect of the asymptotic 
behavior of the two-body term. H~ye and Stew 15~ have subsequently found 
that this cancellation occurs. 

APPENDIX :  C O M M E N T S  ON AN A N A L Y S I S  OF M.  E. F ISHER 

Much of the development of Section 2.1.2 leading to the conclusion 
that argonlike critical behavior rather than mean-field behavior can be 
plausibly expected in the RPM was already summarized in an earlier 
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paper. (53) In an Appendix to ref. 37, Fisher has given a detailed critique of 
that paper. His remarks raise a number of interesting questions worth 
pursuing. 

In ref. 53 it was asserted without further discussion that the inverse 
charge-charge correlation length F can be expected to be nonzero at the 
RPM critical point. Fisher criticizes the lack of justification of this assump- 
tion; I shall therefore elaborate here upon its basis, which is the conclusion 
(cogently argued by Kosterlitz (63)) that for a d-dimensional Coulomb gas, 
of which the RPM is an example, one expects all of the thermodynamic 
states to be noninsulating at nonzero temperature for all d >  2. I interpret 
this to mean that there is a nonzero concentration of free (unassociated) 
charges in the RPM at all such states, including the critical state. I further 
assume that whenever there are free ions there will be screening of the 
charges, so that the charge-charge inverse screening length F is not zero. 
The crucial point is that I do not exempt the RPM critical state from this 
conclusion---even though the density-density correlations indeed become 
unscreened, because the density-density and charge-charge correlations are 
not directly coupled in the RPM, as they more generally are. 

Fisher argues that one must be suspicious of the statement that F: / :0  
at criticality in the RPM on the basis of our general understanding of criti- 
cality that has been built up from the investigation of a variety of models, 
which he sums up as a principle of "infection by the critical singularities" 
such that all the correlation functions of a system must display power- 
law decay at critical. In this connection, Fisher calls attention to the 
observation made in ref. 53 that the RPM internal energy U can be wholly 
determined from hD(r), the charge-charge correlation function. Since 
c , ~  OU/OT diverges as ( T - T o )  -~ at criticality (with ct = 0.11 for argon), 
the hD must therefore carry information concerning critical singularities in 
its structure. Moreover, Fisher observes, the specific heat cv itself can be 
directly expressed in terms of a four-particle function h(12; 34) that must be 
expected to exhibit power-law decay in order for c v to diverge. It is natural 
to assume that h(12; 34), like ht~(,'), has F as its inverse screening length, 
which leads one to conclude that F =  0 at criticality. 

These arguments are surely food for thought. But perhaps they 
prepare one for what one might typically expect when special symmetries 
are not at work, and fall short of implying what one must expect, special 
symmetries or no. In particular, all one requires of hD(r) in order to get the 
( T - T o )  -~ singularity is that for fixed r such that Kr<< 1, the difference 
between hD(r) and its critical value hD(r) c goes like ( T - T c )  ~-~ as 
T---, Tc.  Here x is the inverse density-density correlation length. With 
respect to h(12;34), one might reasonably expect its inverse screening 
length in the r~2 direction to be F, but it does not seem obvious why one 
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should expect its inverse screening length in the I(r~ + r 2 ) / 2 - ( r 3 + r 4 ) / 2 1  
direction to be F rather than x. Thus, on the face of it, power-law decay 
of h(12; 34) at criticality does not necessarily seem to imply F = 0 .  

As discussed in Section 2.2, all of this is changed when one loses the 
special symmetry of the RPM. In the asymmetric case that I have labeled 
the OA case, one finds from the same analysis that one can reasonably 
expect the critical behavior anticipated by Fisher with F ~  x, so that F---, 0 
at criticality. 

I have noted in Section 2.1.2 that even if the RPM F were to go to 
zero at criticality so that ho(r) becomes unscreened, the Stillinger-Lovett 
relation (2.39b) would limit hD(r) to a negative power of r of at least 5 if 
ho(r) decayed monotonically, and the line of reasoning given there and in 
ref. 53 would yield argonlike behavior "to all orders" in the perturbation 
theory defined by the cluster expansion representation of Rs[p, hs, hD]. In 
his Appendix, Fisher acknowledges this, but goes on to point out that if 
one allows oscillatory forms such as his example 

hD(r) = J(sin kor)/r 1+"(~ (Al) 

then hD(r ) will no longer be asymptotically dominated by hs(r) for large r 
in a way that permits the analysis of ref. 53 and Section 2.1.2 to go through. 
This is certainly true, but the form of (A1) is an example of our 
Eq. (2.43)--a special case that one expects to find associated with the 2-line 
of N6el points, as discussed in ref. 53. In responding to a suggestion by 
Kholodenko and Beyerlein 162) that one might have a tricritical point in the 
RPM associated with the intersection of such a ;t-line and the coexistence 
curve, Fisher argues that such tricritical behavior is theoretically unlikely 
and moreover has a striking thermodynamic signature that has not been 
detected in either the experimental or simulation studies of Coulomb- 
driven phase separation. It seems to me that such behavior, the possibility 
of which Fisher assures us in his Section 3 can be safely ignored, is but 
another face of the same behavior that he cautions us in his Appendix to 
take seriously. 

Fisher has justified reservations concerning the cluster-sum representa- 
tions of R(r;p,h] and Rs( r ;p ,  hs, hD-I. They cannot be expected to 
directly yield reliable information about R or Rs for Kr = << 1, as he points 
out. However, in ref. 53 and here, I have not attempted to use these 
representations to give direct information about either function for xr << 1, 
but rather have used them to extract information about the range of the 
difference between Rs(r; p, hs, hD] and R(r; p, hs]. This strategy is indeed 
perturbative with no pretense of rigor--i ts chief function is to probe for 
the appearance of a physically describable mechanism that could lead to 
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mean-field behavior. None has emerged. On the other hand, in a 
parallel investigation of the unsymmetric case in Section 3 here such a 
mechanism does emerge on the basis of plausible assumptions concerning 
the Ro.. 

The obvious next step is to seek representations of the R o. that can 
directly yield small-Kr and small-~c/k information and so test our assump- 
tions and well as provide specific details of criticality that our approach 
here cannot do. To this end we have initiated a renormalization-group 
study of the R o. with Qiang Zhang. Our preliminary RPM results yield 
argonlike behavior; they are consistent with F r  0 at criticality, but do not 
rule out F ~  •P, p < 1. They also confirm F ~  K and mean-field behavior in 
the OA case; a report on our progress in this work is in preparation. 

I turn briefly to a second item in ref. 53 that Fisher considers. It is the 
claim there that in more realistic models than the RPM, 1/r 4 repulsive 
ion-ion terms arising from solvent-averaged ion-dipole-ion interactions 
will tend to prevent true criticality, although competing 1/r  4 t e r m s  that can 
suppress this effect will in general also be present and remain to be 
evaluated. Fisher raises the question of whether screening will alter this 
result. One expects to find such screening in charge-dipole correlations as 
well as charge-charge correlation as pointed out by Kirkwood 177J and sub- 
sequently examined in detail by Hcye and Stell. (vs~ 

As discussed in ref. 53, such a 1/r 4 already appears in the so-called 
cavity model, which differs from the primitive model in one important way. 
The primitive model can be regarded as a model of charged hard spheres 
immersed in a uniform dielectric continuum of dielectric constant e that 
uniformly permeates the interiors of the spheres as well as the space 
exterior to them. In the cavity model, ~s~J the continuum does not permeate 
the interiors of the spheres. These are the cavities--which are characterized 
instead by the dielectric constant eo of the vacuum. There are no explicit 
charge-dipole terms in the cavity model, which is the model considered in 
ref. 53. Instead the 1/r 4 "cavity term" comes from polarization effects 
associated with an induced charge-cavity interaction. The conventional 
treatments of the cavity modeP s~ have not delved into the question of 
screening, which was neglected in ref. 53 also. However, in an extension of 
their earlier work on charge-dipole and dipole~lipole screening, H0ye and 
Stell 1~51 have established that h~(r) will indeed be screened in the cavity 
model by regarding the model as an appropriately scaled limit of a model 
in which one has a solvent of dipolar particles. The screening will introduce 
a rounding at k = 0 of the term proportional to k in the inverse structure 
factor S-~(k)  that comes from the cavity term. However, if the screening 
is weak (F small), this will not alter the effect of this term, which is to shift 
the minimum of S-~(k)  from k = 0  to some k o r  S-~(k)  at ko will be 
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insensitive to the details of S-~(k) at k =0. In particular, in the OA case, 
in which one can expect F ~  0 as criticality is approached, screening is 
unlikely to be a significant factor. 

NOTE A D D E D  IN PROOF 

The screening has also been found by direct computation in the cavity 
model by M. E. Fisher, Y. Levine, and X.-J. Li, J. Chem. Phys. 101:2273 
(1994). See also X.-J. Li, Y. Levine, and M.E. Fisher, Europhys. Lett. 
26:683 (1994). 
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